Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.248
Filtrar
1.
Urolithiasis ; 52(1): 46, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38520518

RESUMO

This study was aimed to investigate the preventive effects of N-acetyl-L-cysteine (NAC) against renal tubular cell injury induced by oxalate and stone formation and further explore the related mechanism. Transcriptome sequencing combined with bioinformatics analysis were performed to identify differentially expressed gene (DEG) and related pathways. HK-2 cells were pretreated with or without antioxidant NAC/with or silencing DEG before exposed to sodium oxalate. Then, the cell viability, oxidative biomarkers of superoxidase dismutase (SOD) and malondialdehyde (MDA), apoptosis and cell cycle were measured through CCK8, ELISA and flow cytometry assay, respectively. Male SD rats were separated into control group, hyperoxaluria (HOx) group, NAC intervention group, and TGF-ß/SMAD pathway inhibitor group. After treatment, the structure changes and oxidative stress and CaOx crystals deposition were evaluated in renal tissues by H&E staining, immunohistochemical and Pizzolato method. The expression of TGF-ß/SMAD pathway related proteins (TGF-ß1, SMAD3 and SMAD7) were determined by Western blot in vivo and in vitro. CDKN2B is a DEG screened by transcriptome sequencing combined with bioinformatics analysis, and verified by qRT-PCR. Sodium oxalate induced declined HK-2 cell viability, in parallel with inhibited cellular oxidative stress and apoptosis. The changes induced by oxalate in HK-2 cells were significantly reversed by NAC treatment or the silencing of CDKN2B. The cell structure damage and CaOx crystals deposition were observed in kidney tissues of HOx group. Meanwhile, the expression levels of SOD and 8-OHdG were detected in kidney tissues of HOx group. The changes induced by oxalate in kidney tissues were significantly reversed by NAC treatment. Besides, expression of SMAD7 was significantly down-regulated, while TGF-ß1 and SMAD3 were accumulated induced by oxalate in vitro and in vivo. The expression levels of TGF-ß/SMAD pathway related proteins induced by oxalate were reversed by NAC. In conclusion, we found that NAC could play an anti-calculus role by mediating CDKN2B/TGF-ß/SMAD axis.


Assuntos
Hiperoxalúria , Oxalatos , Animais , Masculino , Ratos , Acetilcisteína/farmacologia , Oxalato de Cálcio/metabolismo , Células Epiteliais/metabolismo , Hiperoxalúria/induzido quimicamente , Hiperoxalúria/metabolismo , Oxalatos/metabolismo , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
2.
Toxicol In Vitro ; 97: 105812, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38522494

RESUMO

Carbendazim (CBZ) is a benzimidazole fungicide widely used worldwide in industrial, agricultural, and veterinary practices. Although, CBZ was found in all brain tissues causing serious neurotoxicity, its impact on brain immune cells remain scarcely understood. Our study investigated the in vitro effects of CBZ on activated microglial BV-2 cells. Lipopolysaccharide (LPS)-stimulated BV-2 cells were exposed to increasing concentrations of CBZ and cytokine release was measured by ELISA, and Cytometric Bead Array (CBA) assays. Mitochondrial superoxide anion (O2·-) generation was evaluated by Dihydroethidium (DHE) and nitric oxide (NO) was assessed by Griess reagent. Lipid peroxidation was evaluated by measuring the malonaldehyde (MDA) levels. The transmembrane mitochondrial potential (ΔΨm) was detected by cytometry analysis with dihexyloxacarbocyanine iodide (DiOC6(3)) assay. CBZ concentration-dependently increased IL-1ß, IL-6, TNF-α and MCP-1 by LPS-activated BV-2 cells. CBZ significantly promoted oxidative stress by increasing NO, O2·- generation, and MDA levels. In contrast, CBZ significantly decreased ΔΨm. Pre-treatment of BV-2 cells with N-acetylcysteine (NAC) reversed all the above mentioned immunotoxic parameters, suggesting a potential protective role of NAC against CBZ-induced immunotoxicity via its antioxidant and anti-inflammatory effects on activated BV-2 cells. Therefore, microglial proinflammatory over-activation by CBZ may be a potential mechanism by which CBZ could induce neurotoxicity and neurodegenerative disorders.


Assuntos
Acetilcisteína , Carbamatos , Microglia , Acetilcisteína/farmacologia , Lipopolissacarídeos/toxicidade , Benzimidazóis/toxicidade , Óxido Nítrico
3.
Cell Biochem Funct ; 42(2): e3958, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38396357

RESUMO

Iron accumulation in the brain causes oxidative stress, blood-brain barrier (BBB) breakdown, and neurodegeneration. We examined the preventive effects of acetylated oligopeptides (AOP) from whey protein on iron-induced hippocampal damage compared to N-acetyl cysteine (NAC). This 5-week study used 40 male albino rats. At the start, all rats received 150 mg/kg/day of oral NAC for a week. The 40 animals were then randomly divided into four groups: Group I (control) received a normal diet; Group II (iron overload) received 60 mg/kg/day intraperitoneal iron dextran 5 days a week for 4 weeks; Group III (NAC group) received 150 mg/kg/day NAC and iron dextran; and Group IV (AOP group) received 150 mg/kg/day AOP and iron dextran. Enzyme-linked immunosorbent assay, spectrophotometry, and qRT-PCR were used to measure MMP-9, tissue inhibitor metalloproteinase-1 (TIMP-1), MDA, reduced glutathione (GSH) levels, and nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) gene expression. Histopathological and immunohistochemical detection of nestin, claudin, caspase, and GFAP was also done. MMP-9, TIMP-1, MDA, caspase, and GFAP rose in the iron overload group, while GSH, Nrf2, HO-1, nestin, and claudin decreased. The NAC and AOP administrations improved iron overload-induced biochemical and histological alterations. We found that AOP and NAC can protect the brain hippocampus from iron overload, improve BBB disruption, and provide neuroprotection with mostly no significant difference from healthy controls.


Assuntos
Acetilcisteína , Sobrecarga de Ferro , Oligopeptídeos , Animais , Masculino , Ratos , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Caspases/metabolismo , Claudinas/genética , Giro Denteado/metabolismo , Giro Denteado/patologia , Dextranos/metabolismo , Dextranos/farmacologia , Regulação para Baixo , Glutationa/metabolismo , Hipocampo/metabolismo , Hipocampo/patologia , Ferro/metabolismo , Ferro/farmacologia , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/farmacologia , Nestina/genética , Nestina/metabolismo , Nestina/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Inibidor Tecidual de Metaloproteinase-1/genética , Inibidor Tecidual de Metaloproteinase-1/metabolismo , Inibidor Tecidual de Metaloproteinase-1/farmacologia , Regulação para Cima , Oligopeptídeos/farmacologia , Heme Oxigenase-1/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/metabolismo
4.
BMC Oral Health ; 24(1): 222, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347533

RESUMO

BACKGROUND: N-acetylcysteine (NAC) reduces the cytotoxicity and genotoxicity induced by monomers leached from dental composite resins. Herein, we investigated the effects of methacrylate-based resin cement used in dental implant restoration on apoptosis and genotoxicity, as well as the antiapoptotic and antigenotoxic capabilities of its component, NAC. METHODS: The antioxidant NAC (0.1 or 1 wt.%) was experimentally incorporated into the methacrylate-based dental resin cement Premier®. The Premier® + NAC (0.1 or 1 wt.%) mixture was subsequently immersed into Dulbecco's modified Eagle's medium for 72 h, and used to treat human gingival fibroblasts (HGFs). The viability of HGFs was determined using the XTT assay. The formation of deoxyribonucleic acid (DNA) double-strand breaks (DNA-DSBs) was determined using a γ-H2AX assay. Reactive oxygen species (ROS), apoptosis, necrosis, and cell cycles were detected and analyzed using flow cytometry. RESULTS: The eluate of Premier® significantly inhibited HGF proliferation in vitro by promoting a G1-phase cell cycle arrest, resulting in cell apoptosis. Significant ROS production and DNA-DSB induction were also found in HGFs exposed to the eluate. Incorporating NAC (1 wt.%) into Premier® was found to reduce cell cytotoxicity, the percentage of G1-phase cells, cell apoptosis, ROS production, and DNA-DSB induction. CONCLUSION: Incorporating NAC (1 wt.%) into methacrylate-based resin cement Premier® decreases the cell cytotoxicity, ROS production, and DNA-DSBs associated with resin use, and further offers protective effects against the early stages of cell apoptosis and G1-phase cell cycle arrest in HGFs. Overall, our in vitro results indicate that the addition of NAC into methacrylate-based resin cements may have clinically beneficial effects on the cytotoxicity and genotoxicity of these materials.


Assuntos
Acetilcisteína , Metacrilatos , Humanos , Acetilcisteína/farmacologia , Metacrilatos/toxicidade , Cimentos de Resina , Espécies Reativas de Oxigênio , Apoptose , DNA/farmacologia , Fibroblastos , Sobrevivência Celular
5.
Front Immunol ; 15: 1295150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384456

RESUMO

Neutrophils play a primary role in protecting our body from pathogens. When confronted with invading bacteria, neutrophils begin to produce leukotriene B4, a potent chemoattractant that, in cooperation with the primary bacterial chemoattractant fMLP, stimulates the formation of swarms of neutrophils surrounding pathogens. Here we describe a complex redox regulation that either stimulates or inhibits fMLP-induced leukotriene synthesis in an experimental model of neutrophils interacting with Salmonella typhimurium. The scavenging of mitochondrial reactive oxygen species by mitochondria-targeted antioxidants MitoQ and SkQ1, as well as inhibition of their production by mitochondrial inhibitors, inhibit the synthesis of leukotrienes regardless of the cessation of oxidative phosphorylation. On the contrary, antioxidants N-acetylcysteine and sodium hydrosulfide promoting reductive shift in the reversible thiol-disulfide system stimulate the synthesis of leukotrienes. Diamide that oxidizes glutathione at high concentrations inhibits leukotriene synthesis, and the glutathione precursor S-adenosyl-L-methionine prevents this inhibition. Diamide-dependent inhibition is also prevented by diphenyleneiodonium, presumably through inhibition of NADPH oxidase and NADPH accumulation. Thus, during bacterial infection, maintaining the reduced state of glutathione in neutrophils plays a decisive role in the synthesis of leukotriene B4. Suppression of excess leukotriene synthesis is an effective strategy for treating various inflammatory pathologies. Our data suggest that the use of mitochondria-targeted antioxidants may be promising for this purpose, whereas known thiol-based antioxidants, such as N-acetylcysteine, may dangerously stimulate leukotriene synthesis by neutrophils during severe pathogenic infection.


Assuntos
Leucotrieno B4 , Neutrófilos , Salmonella typhimurium , Acetilcisteína/farmacologia , Diamida/farmacologia , Leucotrienos/farmacologia , Fatores Quimiotáticos , Oxirredução , Antioxidantes/farmacologia , Glutationa/farmacologia , Compostos de Sulfidrila/farmacologia
6.
J Pharmacol Exp Ther ; 389(1): 40-50, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38336380

RESUMO

B-cell acute lymphoblastic leukemia (B-ALL) is the most prevalent type of cancer in young children and is associated with high levels of reactive oxygen species (ROS). The antioxidant N-acetylcysteine (NAC) was tested for its ability to alter disease progression in a mouse model of B-ALL. Mb1-CreΔPB mice have deletions in genes encoding PU.1 and Spi-B in B cells and develop B-ALL at 100% incidence. Treatment of Mb1-CreΔPB mice with NAC in drinking water significantly reduced the frequency of CD19+ pre-B-ALL cells infiltrating the thymus at 11 weeks of age. However, treatment with NAC did not reduce leukemia progression or increase survival by a median 16 weeks of age. NAC significantly altered gene expression in leukemias in treated mice. Mice treated with NAC had increased frequencies of activating mutations in genes encoding Janus kinases 1 and 3. In particular, frequencies of Jak3 R653H mutations were increased in mice treated with NAC compared with control drinking water. NAC opposed oxidization of PTEN protein ROS in cultured leukemia cells. These results show that NAC alters leukemia progression in this mouse model, ultimately selecting for leukemias with high Jak3 R653H mutation frequencies. SIGNIFICANCE STATEMENT: In a mouse model of precursor B-cell acute lymphoblastic leukemia associated with high levels of reactive oxygen species, treatment with N-acetylcysteine did not delay disease progression but instead selected for leukemic clones with activating R653H mutations in Janus kinase 3.


Assuntos
Água Potável , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Camundongos , Animais , Pré-Escolar , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Janus Quinases , Taxa de Mutação , Espécies Reativas de Oxigênio/metabolismo , Células Precursoras de Linfócitos B/metabolismo , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , Mutação , Janus Quinase 3/genética , Janus Quinase 3/metabolismo , Progressão da Doença
7.
Plant Physiol Biochem ; 207: 108390, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38373369

RESUMO

Agricultural land contaminated with heavy metals such as non-biodegradable arsenic (As) has become a serious global problem as it adversely affects agricultural productivity, food security and human health. Therefore, in this study, we investigated how the administration of N-acetyl-cysteine (NAC), regulates the physio-biochemical and gene expression level to reduce As toxicity in lettuce. According to our results, different NAC levels (125, 250 and 500 µM) significantly alleviated the growth inhibition and toxicity induced by As stress (20 mg/L). Shoot fresh weight, root fresh weight, shoot dry weight and root dry weight (33.05%, 55.34%, 17.97% and 46.20%, respectively) were decreased in plants grown in As-contaminated soils compared to lettuce plants grown in soils without the addition of As. However, NAC applications together with As stress increased these growth parameters. While the highest increase in shoot fresh and dry weight (58.31% and 37.85%, respectively) was observed in 250 µM NAC application, the highest increase in root fresh and dry weight (75.97% and 63.07%, respectively) was observed in 125 µM NAC application in plants grown in As-polluted soils. NAC application decreased the amount of ROS, MDA and H2O2 that increased with As stress, and decreased oxidative damage by regulating hormone levels, antioxidant and enzymes involved in nitrogen metabolism. According to gene expression profiles, LsHIPP28 and LsABC3 genes have shown important roles in reducing As toxicity in leaves. This study will provide insight for future studies on how NAC applications develop resistance to As stress in lettuce.


Assuntos
Acetilcisteína , Arsênio , Humanos , Acetilcisteína/farmacologia , Arsênio/toxicidade , Alface , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Solo
8.
Rev. clín. esp. (Ed. impr.) ; 224(2): 86-95, feb. 2024. ilus, tab, graf
Artigo em Espanhol | IBECS | ID: ibc-230400

RESUMO

Introducción y objetivo Desde su aparición en diciembre de 2019, la enfermedad por coronavirus causada por el síndrome respiratorio agudo severo coronavirus2 se ha convertido en una emergencia mundial, propagándose rápidamente por todo el mundo. En respuesta a la derivación temprana de estos pacientes a centros de salud ambulatorios, decidimos buscar tratamientos más eficaces en las primeras etapas de su derivación. Este estudio tiene como objetivo prevenir tanto la progresión como el deterioro de las condiciones físicas de los pacientes con COVID-19, reducir la tasa de derivaciones y mitigar los riesgos de hospitalización y de muerte. Material y métodos Realizado en el Centro Terapéutico Dibaj, ciudad de Hamadan, Irán, un ensayo controlado aleatorizado doble ciego abarcó 225 pacientes con COVID-19 de abril a septiembre de 2022. Se obtuvo la aprobación ética de la Universidad de Ciencias Médicas de Hamadan (Aprobación n.° IR.UMSHA .REC.1400.957), con el protocolo registrado en el Registro Iraní de Ensayos Clínicos (Registro n.° IRCT20220302054167N1). Los pacientes cumplieron con el diagnóstico de COVID-19 a través de la presentación de síntomas y la confirmación por PCR, excluyendo aquellos con antecedentes de vacunas y afectación de órganos. Los pacientes con una saturación de oxígeno superior al 92% se asignaron a tres grupos: el grupoA recibió N-acetilcisteína, el grupoB recibió bromhexina y el grupoC recibió atención estándar. Los seguimientos de los niveles de oxígeno, los síntomas y las necesidades de hospitalización se realizaron los días7 y 14, con pacientes hospitalizados monitorizados durante un mes después de la hospitalización. Resultados El estudio encontró que tanto la N-acetilcisteína como la bromhexina pueden reducir efectivamente las tasas de hospitalización y la mortalidad y acortar la duración de la hospitalización... (AU)


Introduction and aim Since its emergence in December 2019, the coronavirus disease caused by the severe acute respiratory syndrome coronavirus2 has become a global emergency, spreading rapidly worldwide. In response to the early referral of these patients to outpatient health centers, we decided to seek more effective treatments in the early stages of their referral. This study aims to prevent both the progression and deterioration of the physical conditions of COVID-19 patients, reduce the rate of referrals, and mitigate the risks of hospitalization and death. Material and methods Conducted at Dibaj Therapeutic Center, Hamadan City, Iran, a double-blind randomized controlled trial encompassed 225 COVID-19 patients from April to September 2022. Ethical approval was obtained from Hamadan University of Medical Sciences (Approval No.: IR.UMSHA.REC.1400.957), with the protocol registered in the Iranian Registry of Clinical Trials (Registration No.: IRCT20220302054167N1). In this study, we included patients who tested positive for COVID-19 PCR and were symptomatic, excluding those who were pregnant or had received a COVID-19 vaccine. Patients with oxygen saturation above 92% were allocated to three groups: GroupA received N-acetylcysteine, GroupB received Bromhexine, and GroupC received standard care. Follow-ups on oxygen levels, symptoms, and hospitalization needs were conducted on days 7 and 14, with hospitalized patients monitored for one month post-hospitalization. Results The study found that both N-acetylcysteine and Bromhexine can effectively reduce hospitalization rates and mortality and shorten the duration of hospitalization. The third visit of patients who received N-acetylcysteine showed an increase of 1.33% in oxygen saturation compared to their first visit, and in patients who received Bromhexine, this increase was 1.19%. The mortality rate was 9.33% in the control group and zero in both groups of patients who received medication... (AU)


Assuntos
Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , /tratamento farmacológico , Infecções por Coronavirus , Acetilcisteína/farmacologia , Bromoexina/farmacologia
9.
Rev. clín. esp. (Ed. impr.) ; 224(2): 86-95, feb. 2024. ilus, tab, graf
Artigo em Espanhol | IBECS | ID: ibc-EMG-583

RESUMO

Introducción y objetivo Desde su aparición en diciembre de 2019, la enfermedad por coronavirus causada por el síndrome respiratorio agudo severo coronavirus2 se ha convertido en una emergencia mundial, propagándose rápidamente por todo el mundo. En respuesta a la derivación temprana de estos pacientes a centros de salud ambulatorios, decidimos buscar tratamientos más eficaces en las primeras etapas de su derivación. Este estudio tiene como objetivo prevenir tanto la progresión como el deterioro de las condiciones físicas de los pacientes con COVID-19, reducir la tasa de derivaciones y mitigar los riesgos de hospitalización y de muerte. Material y métodos Realizado en el Centro Terapéutico Dibaj, ciudad de Hamadan, Irán, un ensayo controlado aleatorizado doble ciego abarcó 225 pacientes con COVID-19 de abril a septiembre de 2022. Se obtuvo la aprobación ética de la Universidad de Ciencias Médicas de Hamadan (Aprobación n.° IR.UMSHA .REC.1400.957), con el protocolo registrado en el Registro Iraní de Ensayos Clínicos (Registro n.° IRCT20220302054167N1). Los pacientes cumplieron con el diagnóstico de COVID-19 a través de la presentación de síntomas y la confirmación por PCR, excluyendo aquellos con antecedentes de vacunas y afectación de órganos. Los pacientes con una saturación de oxígeno superior al 92% se asignaron a tres grupos: el grupoA recibió N-acetilcisteína, el grupoB recibió bromhexina y el grupoC recibió atención estándar. Los seguimientos de los niveles de oxígeno, los síntomas y las necesidades de hospitalización se realizaron los días7 y 14, con pacientes hospitalizados monitorizados durante un mes después de la hospitalización. Resultados El estudio encontró que tanto la N-acetilcisteína como la bromhexina pueden reducir efectivamente las tasas de hospitalización y la mortalidad y acortar la duración de la hospitalización... (AU)


Introduction and aim Since its emergence in December 2019, the coronavirus disease caused by the severe acute respiratory syndrome coronavirus2 has become a global emergency, spreading rapidly worldwide. In response to the early referral of these patients to outpatient health centers, we decided to seek more effective treatments in the early stages of their referral. This study aims to prevent both the progression and deterioration of the physical conditions of COVID-19 patients, reduce the rate of referrals, and mitigate the risks of hospitalization and death. Material and methods Conducted at Dibaj Therapeutic Center, Hamadan City, Iran, a double-blind randomized controlled trial encompassed 225 COVID-19 patients from April to September 2022. Ethical approval was obtained from Hamadan University of Medical Sciences (Approval No.: IR.UMSHA.REC.1400.957), with the protocol registered in the Iranian Registry of Clinical Trials (Registration No.: IRCT20220302054167N1). In this study, we included patients who tested positive for COVID-19 PCR and were symptomatic, excluding those who were pregnant or had received a COVID-19 vaccine. Patients with oxygen saturation above 92% were allocated to three groups: GroupA received N-acetylcysteine, GroupB received Bromhexine, and GroupC received standard care. Follow-ups on oxygen levels, symptoms, and hospitalization needs were conducted on days 7 and 14, with hospitalized patients monitored for one month post-hospitalization. Results The study found that both N-acetylcysteine and Bromhexine can effectively reduce hospitalization rates and mortality and shorten the duration of hospitalization. The third visit of patients who received N-acetylcysteine showed an increase of 1.33% in oxygen saturation compared to their first visit, and in patients who received Bromhexine, this increase was 1.19%. The mortality rate was 9.33% in the control group and zero in both groups of patients who received medication... (AU)


Assuntos
Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , /tratamento farmacológico , Infecções por Coronavirus , Acetilcisteína/farmacologia , Bromoexina/farmacologia
10.
Front Biosci (Landmark Ed) ; 29(2): 58, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38420829

RESUMO

BACKGROUND: Pyroptosis is a critical form of cell death during the development of chronic kidney disease (CKD). Tripartite motif 6 (TRIM6) is an E3-ubiquitin ligase that participates in the progression renal fibrosis (RF). The aim of this study was to investigate the roles of TRIM6 and Glutathione peroxidase 3 (GPX3) in oxidative stress-induced inflammasome activation and pyroptosis in Ang-II treated renal tubular epithelial cells. METHODS: To study its role in RF, TRIM6 expression was either reduced or increased in human kidney-2 (HK2) cells using lentivirus, and Ang-II, NAC and BMS-986299 were served as reactive oxygen species (ROS) inducer, ROS scavenger and NLRP3 agonist respectively. Pyroptosis and mitochondrial ROS were measured by flow cytometry. The levels of malondialdehyde (MDA), glutathione (GSH), and superoxide dismutase (SOD) were determined using commercial kits, while the levels of IL-1ß, IL-18, IL-6, and tumor necrosis factor-α (TNF-α) were determined by Enzyme-Linked Immunosorbent Assay (ELISA). Co-immunoprecipitation (Co-IP) assay was used to evaluate the interaction between TRIM6 and GPX3. Reverse transcription-polymerase chain reaction (RT-PCR) and western blot were used to measure mRNA and protein expression, respectively. RESULTS: Treatment with Angiotensin II (Ang II) increased the protein and mRNA levels of TRIM6 in HK2 cells. Ang II also increased mitochondrial ROS production and the malondialdehyde (MDA) level, but decreased the levels of GSH and SOD. In addition, Ang II enhanced HK2 cell pyroptosis, increased the levels of IL-1ß, IL-18, IL-6, and TNF-α, and promoted the expression of active IL-1ß, NLRP3, caspase-1, and GSDMD-N proteins. These effects were reversed by knockdown of TRIM6 and by treatment with N-acetyl-L-cysteine (NAC), a ROS scavenger. BMS-986299, an NLRP3 agonist treatment, did not affect ROS production in HK2 cells exposed to Ang II combined with NAC, but cell pyroptosis and inflammation were aggravated. Moreover, the overexpression of TRIM6 in HK2 cells resulted in similar effects to Ang II. NAC and GPX3 overexpression in HK2 cells could reverse ROS production, inflammation, and pyroptosis induced by TRIM6 overexpression. TRIM6 overexpression decreased the GPX3 protein level by promoting its ubiquitination, without affecting the GPX3 mRNA level. Thus, TRIM6 facilitates GPX3 ubiquitination, contributing to increased ROS levels and pyroptosis in HK2 cells. CONCLUSIONS: TRIM6 increases oxidative stress and promotes the pyroptosis of HK2 cells by regulating GPX3 ubiquitination. These findings could contribute to the development of novel drugs for the treatment of RF.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Interleucina-18/metabolismo , Interleucina-18/farmacologia , Piroptose , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Inflamação , Acetilcisteína/metabolismo , Acetilcisteína/farmacologia , Superóxido Dismutase/metabolismo , Células Epiteliais/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/farmacologia , Ubiquitinação , Malondialdeído/metabolismo , RNA Mensageiro/metabolismo
11.
Sao Paulo Med J ; 142(4): e2023113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38422239

RESUMO

BACKGROUND: To the best of our knowledge, this is the first study to evaluate the effectiveness of specific concentrations of antibiofilm agents, such as N-acetyl cysteine (NAC), rifampicin, and ozone, for the treatment of pan-resistant Klebsiella pneumoniae (PRKp). OBJECTIVES: We evaluated the effectiveness of antibiofilm agents, such as NAC, rifampicin, and ozone, on biofilm formation in PRKp at 2, 6, 24, and 72 h. DESIGN AND SETTING: This single-center experimental study was conducted on June 15, 2017, and July 15, 2018, at Istanbul Faculty of Medicine, Istanbul University, Turkey. METHODS: Biofilm formation and the efficacy of these agents on the biofilm layer were demonstrated using colony counting and laser-screened confocal microscopy. RESULTS: NAC at a final concentration of 2 µg/mL was administered to bacteria that formed biofilms (24 h), and no significant decrease was detected in the bacterial counts of all isolates (all P > 0.05). Rifampicin with a final concentration of 0.1 µg/mL was administered to bacteria that formed biofilm (24 h), and no significant decrease was detected in bacterial count (all P > 0.05). Notably, ozonated water of even 4.78 mg/L concentration for 72 h decreased the bacterial count by ≥ 2 log10. CONCLUSION: Different approaches are needed for treating PRKp isolates. We demonstrate that PRKp isolates can be successfully treated with higher concentrations of ozone.


Assuntos
Acetilcisteína , Ozônio , Humanos , Acetilcisteína/farmacologia , Ozônio/farmacologia , Rifampina/farmacologia , Klebsiella pneumoniae , Biofilmes
12.
Colloids Surf B Biointerfaces ; 235: 113791, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38335769

RESUMO

Magnetic nanoparticles (MNPs) modified with tannic acid (TA) have shown remarkable success as an antioxidant and antimicrobial therapeutic agent. Herein, we report a synthetic procedure for the preparation of silica-coated MNPs modified with N-acetylcysteine-modified chitosan and TA. This was achieved by free-radical grafting of NAC onto chitosan (CS), a layer-by-layer technique for modifying negatively charged MNP@SiO2 nanoparticles with positively charged CS-NAC, and crosslinking CS with TA. The antioxidant and metabolic effects of MNP@SiO2-CS-NAC and MNP@SiO2-CS-NAC-TA nanoparticles were tested in a model of prediabetic rats with hepatic steatosis, the hereditary hypertriglyceridemic rats (HHTg). The particles exhibited significant antioxidant properties in the liver, increasing the activity of the antioxidant enzymes superoxide dismutase (SOD), glutathione reductase (GR) and glutathione peroxidase (GPx), decreasing the concentration of the lipoperoxidation product malondialdehyde (MDA), and improving the antioxidant status determined as the ratio of reduced to oxidized glutathione; in particular, TA increased some antioxidant parameters. MNPs carrying antioxidants such as NAC and TA could thus represent a promising therapeutic agent for the treatment of various diseases accompanied by increased oxidative stress.


Assuntos
Quitosana , Nanopartículas de Magnetita , Polifenóis , Estado Pré-Diabético , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Acetilcisteína/farmacologia , Quitosana/farmacologia , Estado Pré-Diabético/metabolismo , Dióxido de Silício/farmacologia , Glutationa/metabolismo , Ratos Wistar , Estresse Oxidativo , Fígado , Superóxido Dismutase/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(8): e2317343121, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38359293

RESUMO

Glucose and amino acid metabolism are critical for glioblastoma (GBM) growth, but little is known about the specific metabolic alterations in GBM that are targetable with FDA-approved compounds. To investigate tumor metabolism signatures unique to GBM, we interrogated The Cancer Genome Atlas for alterations in glucose and amino acid signatures in GBM relative to other human cancers and found that GBM exhibits the highest levels of cysteine and methionine pathway gene expression of 32 human cancers. Treatment of patient-derived GBM cells with the FDA-approved single cysteine compound N-acetylcysteine (NAC) reduced GBM cell growth and mitochondrial oxygen consumption, which was worsened by glucose starvation. Normal brain cells and other cancer cells showed no response to NAC. Mechanistic experiments revealed that cysteine compounds induce rapid mitochondrial H2O2 production and reductive stress in GBM cells, an effect blocked by oxidized glutathione, thioredoxin, and redox enzyme overexpression. From analysis of the clinical proteomic tumor analysis consortium (CPTAC) database, we found that GBM cells exhibit lower expression of mitochondrial redox enzymes than four other cancers whose proteomic data are available in CPTAC. Knockdown of mitochondrial thioredoxin-2 in lung cancer cells induced NAC susceptibility, indicating the importance of mitochondrial redox enzyme expression in mitigating reductive stress. Intraperitoneal treatment of mice bearing orthotopic GBM xenografts with a two-cysteine peptide induced H2O2 in brain tumors in vivo. These findings indicate that GBM is uniquely susceptible to NAC-driven reductive stress and could synergize with glucose-lowering treatments for GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Camundongos , Animais , Peróxido de Hidrogênio , Peróxidos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Proteômica , Acetilcisteína/farmacologia , Glucose , Linhagem Celular Tumoral , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética
14.
Phytomedicine ; 125: 155337, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38241915

RESUMO

(Background): Cadmium is an environmental pollutant associated with several liver diseases. Baicalin and N-Acetylcysteine have antioxidant and hepatoprotective effects. (Purpose): However, it is unclear whether baicalin and N-Acetylcysteine can alleviate Cadmium -induced liver fibrosis by regulating metabolism, or whether they exert a synergistic effect. (Study design): We treated Cadmium-poisoned mice with baicalin, N-Acetylcysteine, or baicalin+ N-Acetylcysteine. We studied the effects of baicalin and N-Acetylcysteine on Cadmium-induced liver fibers and their specific mechanisms. (Methods): We used C57BL/6 J mice, and AML12, and HSC-6T cells to establish in vitro assays and in vivo models. (Results): Metabolomics was used to detect the effect of baicalin and N-Acetylcysteine on liver metabolism, which showed that compared with the control group, the Cadmium group had increased fatty acid and amino acid levels, with significantly reduced choline and acetylcholine contents. Baicalin and N-Acetylcysteine alleviated these Cadmium-induced metabolic changes. We further showed that choline alleviated Cadmium -induced liver inflammation and fibrosis. In addition, cadmium significantly promoted extracellular leakage of lactic acid, while choline alleviated the cadmium -induced destruction of the cell membrane structure and lactic acid leakage. Western blotting showed that cadmium significantly reduced mitochondrial transcription factor A (TFAM) and Choline Kinase α(CHKα2) levels, and baicalin and N-Acetylcysteine reversed this effect. Overexpression of Tfam in mouse liver and AML12 cells increased the expression of CHKα2 and the choline content, alleviating and cadmium-induced lactic acid leakage, liver inflammation, and fibrosis. (Conclusion): Overall, baicalin and N-Acetylcysteine alleviated cadmium-induced liver damage, inflammation, and fibrosis to a greater extent than either drug alone. TFAM represents a target for baicalin and N-Acetylcysteine, and alleviated cadmium-induced liver inflammation and fibrosis by regulating hepatic choline metabolism.


Assuntos
Acetilcisteína , Cádmio , Flavonoides , Camundongos , Animais , Acetilcisteína/farmacologia , Cádmio/toxicidade , Camundongos Endogâmicos C57BL , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fígado , Inflamação/metabolismo , Colina/metabolismo , Colina/farmacologia , Colina/uso terapêutico , Ácido Láctico/metabolismo , Ácido Láctico/farmacologia , Ácido Láctico/uso terapêutico
15.
Chem Biol Drug Des ; 103(1): e14430, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38230777

RESUMO

N-acetylcysteine (NAC) is a recommended drug for treating acetaminophen (APAP) intoxication. Due to NAC's low bioavailability, this study aimed to use polyrhodanine (PR) nanoparticles (NPs) as a drug carrier to improve the effectiveness of NAC. After preparation and characterization of NAC loaded on PR, 30 rats were randomly divided into five groups of six. The first group (control) received normal saline. Groups 2-5 were treated with normal saline, PR, NAC, and NAC loaded on PR, respectively. The treatments were started 4 h after oral administration of APAP (2000 mg kg-1 ). After 48 h, the animals were anesthetized, and liver function indices and oxidative stress were measured in tissue and serum samples. The APAP administration can increase aminotransferases and alkaline phosphatase enzymes in serum, decreasing the total antioxidant capacity and thiol groups and increasing lipid peroxidation in liver tissue. Administration of PR-NAC could effectively improve the level of serum-hepatic enzymes, total antioxidant capacity and thiol groups, lipid peroxidation, and pathological changes in liver tissue in animals poisoned with APAP. PR-NAC has a significant therapeutic effect on preventing acute hepatotoxicity caused by APAP, and its effectiveness can be associated with an improvement in the oxidant/antioxidant balance of liver tissue.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Nanopartículas , Ratos , Animais , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Acetaminofen/toxicidade , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Solução Salina/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fígado , Compostos de Sulfidrila
16.
Annu Rev Pathol ; 19: 453-478, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38265880

RESUMO

Acetaminophen (APAP) overdose is the clinically most relevant drug hepatotoxicity in western countries, and, because of translational relevance of animal models, APAP is mechanistically the most studied drug. This review covers intracellular signaling events starting with drug metabolism and the central role of mitochondrial dysfunction involving oxidant stress and peroxynitrite. Mitochondria-derived endonucleases trigger nuclear DNA fragmentation, the point of no return for cell death. In addition, adaptive mechanisms that limit cell death are discussed including autophagy, mitochondrial morphology changes, and biogenesis. Extensive evidence supports oncotic necrosis as the mode of cell death; however, a partial overlap with signaling events of apoptosis, ferroptosis, and pyroptosis is the basis for controversial discussions. Furthermore, an update on sterile inflammation in injury and repair with activation of Kupffer cells, monocyte-derived macrophages, and neutrophils is provided. Understanding these mechanisms of cell death led to discovery of N-acetylcysteine and recently fomepizole as effective antidotes against APAP toxicity.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Animais , Acetaminofen/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Apoptose , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico , Autofagia
17.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279215

RESUMO

The aim of this work was to evaluate possible mechanisms involved in the protective effect of N-acetyl-L-cysteine (NAC) on hepatic endocrine-metabolic, oxidative stress, and inflammatory changes in prediabetic rats. For that, normal male Wistar rats (60 days old) were fed for 21 days with 10% sucrose in their drinking water and 5 days of NAC administration (50 mg/kg, i.p.) and thereafter, we determined: serum glucose, insulin, transaminases, uric acid, and triglyceride levels; hepatic fructokinase and glucokinase activities, glycogen content, lipogenic gene expression; enzymatic and non-enzymatic oxidative stress, insulin signaling pathway, and inflammatory markers. Results showed that alterations evinced in sucrose-fed rats (hypertriglyceridemia, hyperinsulinemia, and high liver fructokinase activity together with increased liver lipogenic gene expression and oxidative stress and inflammatory markers) were prevented by NAC administration. P-endothelial nitric oxide synthase (P-eNOS)/eNOS and pAKT/AKT ratios, decreased by sucrose ingestion, were restored after NAC treatment. In conclusion, the results suggest that NAC administration improves glucose homeostasis, oxidative stress, and inflammation in prediabetic rats probably mediated by modulation of the AKT/NOS pathway. Administration of NAC may be an effective complementary strategy to alleviate or prevent oxidative stress and inflammatory responses observed in type 2 diabetes at early stages of its development (prediabetes).


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Estado Pré-Diabético , Ratos , Masculino , Animais , Acetilcisteína/farmacologia , Acetilcisteína/metabolismo , Estado Pré-Diabético/tratamento farmacológico , Ratos Wistar , Diabetes Mellitus Tipo 2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sacarose/farmacologia , Estresse Oxidativo , Insulina/metabolismo , Transdução de Sinais , Glucose/farmacologia , Óxido Nítrico/metabolismo
18.
BMC Complement Med Ther ; 24(1): 46, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245726

RESUMO

BACKGROUND: This study aimed to evaluate the effect of argon-based No-ozone Cold Plasma (NCP) on neuroblastoma cancer cell apoptosis. METHODS: Experiments were performed with SK-N-SH and HS 68. Cell cultures were treated with NCP for 1, 3, and 5 min. NCP was applied using three different strategies: direct NCP application to cell cultures, to only media, and to only cells. Evaluation of cell viability and the level of the reactive oxygen species (ROS) was performed. N-acetyl-L-cysteine (NAC) was also used to antagonize intracellular ROS. Cleaved caspase 3, PARP, aquaporin (AQP) 3 and 8 were detected. RESULTS: NCP induced a gradual decrease in the SK-N-SH cell viability. In contrast, the viability of HS 68 cells did not change. SK-N-SH cells viability was reduced the most when the only media-NCP application strategy was employed. Intracellular ROS levels were significantly increased with time. Cleaved caspase 3 and PARP were increased at 6 h after NCP application. SK-N-SH cells remained viable with NAC after NCP application. AQP 3 and 8 were over-expressed in SK-N-SH cells. CONCLUSION: These findings demonstrate the anti-cancer effect of NCP on neuroblastoma cells. NCP enhanced the selective apoptosis of neuroblastoma cells due to the increased intracellular ROS.


Assuntos
Neuroblastoma , Ozônio , Gases em Plasma , Humanos , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Gases em Plasma/farmacologia , Gases em Plasma/uso terapêutico , Ozônio/farmacologia , Ozônio/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Linhagem Celular Tumoral , Apoptose , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Acetilcisteína/farmacologia , Acetilcisteína/uso terapêutico
19.
Ecotoxicol Environ Saf ; 270: 115930, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38184979

RESUMO

Cadmium (Cd) is a harmful metal that seriously affects the male reproductive system, but the mechanism of how Cd exposure damages Sertoli cells is not fully understood. This study used TM4 cells to explore the mechanism of Cd damage to Sertoli cells. We found that Cd was concentration- and time-dependent on TM4 cell viability. Cd exposure increased intracellular reactive oxygen species (ROS) levels, lactate dehydrogenase (LDH), and Interleukin-1ß (IL-1ß) release in TM4 cells, decreased mitochondrial function, and increased pyroptosis. N-acetylcysteine (NAC), MCC950 and BAY 11-7082 (BAY) alleviate the release of IL-1ß and LDH induced by Cd. NAC reduced Cd induced increases in ROS, NLRP3, Caspase-1, Heme oxygenase-1(HO-1), superoxide dismutase (SOD2), and increased mitochondrial function. The activation of GSDMD is the main causes of pyroptosis, and NAC significantly inhibit its activation and formation. Our results suggest that Cd exposure induces a toxic mechanism of GSDMD-mediated pyroptosis in TM4 cells by increasing ROS levels and activating the inflammasome.


Assuntos
Cádmio , Inflamassomos , Masculino , Humanos , Inflamassomos/metabolismo , Cádmio/toxicidade , Espécies Reativas de Oxigênio , Piroptose , Transdução de Sinais , Estresse Oxidativo , Acetilcisteína/farmacologia
20.
Nat Commun ; 15(1): 954, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38296937

RESUMO

Chronic wounds are often infected with biofilm bacteria and characterized by high oxidative stress. Current dressings that promote chronic wound healing either require additional processes such as photothermal irradiation or leave behind gross amounts of undesirable residues. We report a dual-functionality hydrogel dressing with intrinsic antibiofilm and antioxidative properties that are synergistic and low-leaching. The hydrogel is a crosslinked network with tethered antibacterial cationic polyimidazolium and antioxidative N-acetylcysteine. In a murine diabetic wound model, the hydrogel accelerates the closure of wounds infected with methicillin-resistant Staphylococcus aureus or carbapenem-resistant Pseudomonas aeruginosa biofilm. Furthermore, a three-dimensional ex vivo human skin equivalent model shows that N-acetylcysteine promotes the keratinocyte differentiation and accelerates the re-epithelialization process. Our hydrogel dressing can be made into different formats for the healing of both flat and deep infected chronic wounds without contamination of the wound or needing other modalities such as photothermal irradiation.


Assuntos
Surdez , Diabetes Mellitus , Staphylococcus aureus Resistente à Meticilina , Infecção dos Ferimentos , Humanos , Animais , Camundongos , Antioxidantes/farmacologia , Acetilcisteína/farmacologia , Hidrogéis/farmacologia , Cicatrização , Bandagens , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes , Infecção dos Ferimentos/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...